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ABSTRACT 

Experimental and theoretical results are presented on the analytical focusing field-flow fractionation 
(FFFF) of micrometre-sized particles, using the intrinsic hydrodynamic force for separation and integral 
Doppler anemometry (IDA) for detection of fractions. The intrinsic hydrodynamic force, new in FFF 
practice, which naturally arises in a shear flow, allows FFFF to be implemented without the application of 
any external force field to a channel. A stationary and uniform concentration distribution of particles in a 
flow is maintained at the channel entrance, and different fractions are detected under the essentially 
non-equilibrium conditions in the process of transformation of initially uniform concentration profiles into 
laterally inhomogeneous profiles in the course of the advancement of particles along the channel. The IDA 
detection of fractions is made not at the outlet, but at intermediate distances along the channel, as soon as 
the separation of fractions across the channel is started. The necessary theory of the transient concentra- 
tion distributions of particles in a flow is considered in a non-diffusive approximation for arbitrary profiles 
of flow velocity and lateral force, and specified for the case of intrinsic hydrodynamic force. 

INTRODUCTION 

Recently a new technique for the rapid measurement of the transverse 
concentration profiles of particles in a flow was introduced, namely integral Doppler 
anemometry (IDA) [ll4]. When applied to analytical field-flow fractionation (FFF) 
problems [557], this technique allows the detection of fractions just inside the channel 
instead of at its outlet, as is usually done. This promises a considerable increase in 
analysis rate and a decrease in the necessary channel length in classical equilibrium 
FFF systems [5-171. The point is that the detection of fractions can be started 
immediately after the establishment of transverse equilibrium of particles in a channel, 
and it is not necessary to wait until the much longer longitudinal separation of 
fractions is completed [lL4]. Moreover, the use of IDA opens up some new possibilities 
that are inaccessible with traditional recording techniques in FFF. They include the 
possibility of non-equilibrium analytical FFF when different particle species are 
detected not after [5517] but during the process of their equilibration across the 
channel. This promises a further shortening of analysis times and the channel length in 
FFF. It has been shown [224] that the most advantageous for IDA applications are the 
focusing or hyperlayer FFF systems (FFFF) considered by Jani-a, Giddings and others 
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[8-171. In such systems, as they were theoretically suggested [&I41 and experimentally 
implemented [15-l 71, a steady-state transverse concentration distribution ofparticles in 
a channel flow is formed owing to the action of two lateral fields: a strong primary field 
(centrifugal, electrical or transverse fluid flow) and a counteracting secondary field 
(gradient of solvent density or pH). As a result, after the transverse equilibrium is set, 
the particles of different species are concentrated near the appropriate points of 
channel cross-section, where the corresponding net acting forces are zero [8-121. For 
the negligibly small diffusion of particles the resulting concentration profiles would be 
the sum of delta-functions, but the diffusion process makes them the sum of 
Gaussian-type curves [9,11]. For these laterally equilibrium conditions the concentra- 
tion profiles of fractions, retention ratios and effective plate heights have been 
considered theoretically [9%14]. 

The results of our previous experiments [4] and theoretical studies [2,3] 
demonstrated the possibility of implementing an FFFF system with IDA detection 
without the application of any external field to a channel. This possibility is based on 
the so-called tubular pinch or SegreeSilberberg effect [l&19], the essence of which is 
that the particle in a laminar channel flow undergoes the action of transverse focusing 
hydrodynamic forces due to some inertial effects in a fluid. The magnitude of this force 
depends on the flow velocity and the ratio of particle diameter to channel width, but 
the focusing positions are independent of the particle dimensions and lie symmetrically 
between the channel centre and its walls [4,18,19]. Thus, after establishment of 
transverse equilibrium, all the particle species would be focused together in the same 
lateral position. However, during the equilibration process they are separated laterally 
owing to the different lateral velocities gained under the action of the SegreeSilberberg 
hydrodynamic force. Hence, in such a non-equilibrium situation, the sum of the 
transient concentration profiles of a fraction can be registered using the IDA 
technique, as was done for a suspension flow of monodisperse particles [4]. Provided 
that these transient profiles have characteristic maxima, analogous to those recorded 
previously [4], this solves the task of analytical fractionation. 

In this paper we present experimental evidence for analytical focusing field-flow 
fractionation of particles under non-equilibrium conditions, with no external field 
applied to the channel, using intrinsic hydrodynamic focusing force (SegreeSilberberg 
force) and IDA recording technique. The theoretical relationships necessary for the 
description of the transient concentration profiles of particles under these conditions, 
and for the shape of IDA spectra, are developed. The experimental set-up and 
conditions for implementation of this separation process and for recording by means 
of the IDA technique are described. 

THEORETICAL 

Generul relationships 

The theory of focusing or hyperlayer FFF was developed in a series of papers 
[S-14], which considered the concentration distribution of particles over the channel 
after the establishment of particle equilibrium across the channel under the action of 
a lateral force. Under such laterally equilibrium conditions the transverse concentra- 
tion profile of the particle system in a channel flow can be well approximated by the 
sum of Gaussian-type curves centred at the appropriate stationary focusing points 
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[9,11,14]. The intrinsic hydrodynamic focusing force, used in our previous [4] and 
present experiments, has two specific features. First, the particles driven by this force 
reach their lateral equilibrium positions in a flow very far from the channel entrance. 
Second, these equilibrium positions are identical for all the particles [l&19]. In 
contrast, for intermediate distances from the entrance, where the transverse equilib- 
rium is not yet established, the lateral positions of concentration peaks and their 
specific shapes depend strongly on these distances, and also on the particle size and the 
specific profile of the acting force. This opens up the possibility of the analytical 
fractionation of particles, but means operating under non-equilibrium, although 
stationary, conditions. This necessitates the calculation of the essentially non-equilib- 
rium lateral concentration profiles along the channel, corresponding to the specific 
profile of the intrinsic hydrodynamic force acting on the particles. The profile of this 
force has been calculated numerically for plane Poiseuille flow [19] and, as we have 
verified, can be well approximated by the following equation: 

Fx = Fodx); 

(1) 
q(x) = x(x? - x2); xr z 0.62 

where vii is the maximum flow velocity, p. is the fluid density, a is the particle radius, 
h is the flat channel half-width, q(x) is the dimensionless force profile and xf is the 
focusing point (our previous [4] and also the present measurements show that the 
focusing point can be closer to the centre, but this makes no significant difference). We 
use the dimensionless coordinate system in the units of h with the z-axis along the flow, 
the x-axis perpendicular to the channel wall and the origin in the middle of a channel. 
Eqn. 1 shows that for (xl > xf the force is directed inside the channel [q(x) > 0 for 
- 1 d x < - xf, q(x) < 0 for xf < x < I], whereas for 1x1 < xf it is directed from the 
centre, tending to concentrate the particles near the two symmetrical planes x = + xf. 
If the stationary transverse concentrational profile of particles Co(xo) is maintained at 
the channel entrance, then the transient concentration distribution C(x,z) can be 
found as a solution of the stationary equation of convective diffusion along the 
channel. We shall assume that the particles are sufficiently large to neglect their 
Brownian movement. In this case the particle velocity i: is completely determined by 
the balance of the driving force and Stokes viscous force, and the convective diffusion 
equation reduces to the usual continuity equation: 

div[C(x, z)3] = 0; 

Fo 
v = ----q(x); x 6qa 

vy = 0; vz = q44; 

wx, z) 
V(X)~ + /Lu(x)ac(x. z, ~ + C(x, z)- = aZ 

+44 o. 

ax ’ 

P= 
6wq _ VII 

Fo -VI 

(2) 
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where y is the fluid viscosity and u(x) is the dimensionless flow velocity profile. Eqn. 
2 can be solved in a general form for - 1 < x < 1 , z 3 0, C(x, 0) = Co(xO), provided 
that at the channel walls, i.e., at x = rt 1, the driving force q(x) is directed inside the 
channel. Using a standard approach [20], we obtain the following equations of 
characteristics for eqn. 2: 

dx 
- = cp(x); 
ds 

dz dC d+) 
-=/.LLL(x); --= -CT 
ds ds (3) 

where s is a variable parameter. Solving eqns. 3, we obtain 

x 

z() = 0 

C(x, z) = Co{xo(x, z)]v{;;;z)l 

As can be seen from comparison with eqn. 2, the first of eqns. 4 is actually the particle 
trajectory equation. It relates the transient (at a given z) lateral coordinate x of 
a particle to its starting coordinate x0 (at z = 0) and vice veysu: x = x(x0, z), 
x0 = x0(x, z). 

Eqns. 4 describe the stationary (but non-equilibrium in essence) concentration 
distribution of particles over the channel flow in the kinematic (non-diffusive) 
approximation for an arbitrary velocity profile of laminar flow in a flat channel and 
arbitrary lateral profile of a transverse force homogeneous along the channel. These 
equations show that the shape and other characteristic features, such as positions of 
maxima of the transient lateral concentration profiles, depend strongly on the force 
and velocity profiles, q(x) and u(x), distance along the channel z and particle 
characteristic ,LL. This situation differs from the laterally equilibrium one, where the 
concentration maxima have a Gaussian shape and their positions do not depend on 
z [9-141. 

We shall analyse the shape of non-equilibrium concentration profiles, deter- 
mined by eqns. 4, for the simplest and most relevant for our experiments symmetrical 
case, when U(X) = u(-x) and q(x) = - q(x). In this case only the 0 < x < I interval 
needs to be considered. We shall assume also that the transverse force focuses the 
particles at some plane x = xr (and, of course, at the symmetrical plane .Y = -xr) 
which are parallel to the channel walls: 

(5) 

For such force profiles, as can be seen from eqns. 4, the following inequalities are valid 
for all z > 0: if a starting coordinate x0 < xf, then x(x0, z) > x0, but if x0 > xf, then 
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x(x0, z) < x0. The latter means the existence of a boundary trajectory x = x,(z) such 
that C(x, z) E 0 for x > x,(z). This trajectory starts from x0 = 1 and is described by 

x!n 

s u(x) 
z=p pdx 

cp(x) 
= @(x,) (6) 

The curve of eqn. 6 defines the position of the peripheral sharp edge of the transverse 
concentrational distribution of particles in a flow. Owing to the action of the transverse 
force, this distribution detaches from the channel walls and changes its initial shape in 
the course of advancement of particles along the channel. The fraction characteristic 
parameter p does not enter the @(xm) in eqn. 6, so the relationship z = @(xm) is the 
universal (apparatus) function: the edge position of the concentration profile for any 
fraction can be obtained from this function after multiplication by p. 

Using eqns. 4-6, it is possible to draw some general conclusions about the shape 
of C(x, z). We shall start with the concentration values at the channel axis and at the 
peripheral edge of the concentrational distribution. As follows from eqns. 4, for 
x(x0, z) -+ 0 with z = constant, the starting coordinate x0(x, z) also tends to zero. 
Setting x -+ 0 and x = x, in eqns. 4, we obtain correspondingly: 

C(0, z) = C,(O) lim 
cp{xo(x, 4) 

X-r0 cpw 

G-Gl~ 
v(l) 

z) = C,(l)- 
40(xm) 

Thus, depending on the specific form of the force profile (eqn. 5), concentration 
profiles both falling and rising to the channel walls are possible. Accordingly, the edge 
singularity of C(x, z) at x = x,(z) may be of peak or step type. This can be solved 
proceeding from the sign of the derivative X(x, z)/dx with z = constant. Let Co(xo) be 
constant at the channel entrance. Taking the derivative of eqns. 4, we obtain 

ac(.x, z) c cp(xoh:(xo) 44 
[ 

d4-u) 
ax O [cpW12 4x0) CPXXO) 1 

(8) 

where x and x0 are related by eqns. 4. The distribution edge lies at x > xf, where 
x(x9, z) < x0 for all z > 0. For a plane-symmetrical flow that means that u(x) > u(xo). 
Hence the sign of eqn. 8 depends completely on the signs of the first and second 
derivatives of the force profile, cp: and cp:. For example, if cp: = 0 [q(x) = constant], 
then X(x, z)/dx = 0 and the concentration profile keeps a rectangular shape, 
shrinking to the focusing planes with increase in z. In the case when cp: < 0 and cpi < 0, 
which corresponds to the force rapidly falling inside the channel, X(x, z)/ax > 0, so 
the concentration profile has the peak at x = x,(z). 

Together with the shapes of transient concentrational profiles, another impor- 
tant factor in dealing with the non-equilibrium situation is the effective distance zf 
from the channel entrance corresponding to the establishment of lateral equilibrium in 
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the particles’ system in a flow. This characteristic, in addition to the shape and height 
of the peripheral edge singularity of C(x, z) in the limit of lateral equilibrium, is defined 
by behaviour of q(x) near the focusing point. Taking into account that at this point 
q(x) = 0, we can write in general form, for (x - xr) << 1, 

dx> = - cpo(x - XfY, cp,>O,a>O (9) 

The value of the equilibrium distance zf can be defined formally by the integral in eqns. 
4, taken from 1 to xf. For a < 1 in eqn. 9 this integral is finite, but for CI 3 1 it diverges. 
Formally this means that full equilibrium sets at z -+ cc. In reality, the registered 
singularities of C(x, z) (peak or step) have a finite width d (in units of h) which is 
determined by diffusive and instrumental broadening. Hence in practice it is suflicient 
to use an effective value of zf corresponding to xf + A as the upper limit of integration 
in eqns. 4. If A (( 1, then an approximate expression for zf can be obtained, in addition 
to asymptotic relationships for x,(z) and C(x, z), valid for large z z zf. Integrating in 
eqns. 4 and taking into account that the nearest vicinity of xf gives the main 
contribution to the result, we obtain approximately: 

fora= 1: 

Zf 
~ PWln 1 0 cub A’ 

X,(Z) = xf + exp 

~kll~ z> z Co(l)mexp 
CPO [ 1 s 

fora> 1: 

P(Xf) 1 -l. 
zfZ(a-l)% 2 ’ 0 

x,(z> z Xf + [(ay~;oz]A; 

Eqns. 10 show, that for large particles (A >> 1) and weak lateral fields (p >> l), the 
equilibration distance can be very long. For smaller distances z < zf, the height 

C(x,, z) of a concentration peak increases and its width decreases with increase in z, 
while the peak position x,(z) approaches the focusing point xf, obeying simular laws. 
Thus, eqns. 10 describe in a non-diffusive approximation the final stage of transverse 
equilibration in a particle system in a flow and the transition to the stationary lateral 
concentration profiles usually considered as a starting point in FFFF theory [8-141. 
For traditional FFFF systems with primary and secondary fields, and also for the 
system with an intrinsic hydrodynamic force, the power index CI in eqns. 9 and 10 is 
equal to unity. 

We shall now consider the resolving power of FFFF with IDA detection for 
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a laterally non-equilibrium situation; the equilibrium situation was considered 
previously [2]. The distance between the peaks of two fractions in the IDA spectrum is 
determined by the difference in flow velocities at the lateral positions of their 
concentration peaks [2]. These positions are x,(z,p), described by eqn. 6 for 
appropriate p. Let two fractions in a flow have characteristic parameters p and 
(p + 6~). Then the distance between the corresponding Doppler peaks [2,3] is 

(11) 

Here q = (4rcnO/&)sin(9/2) is the scattering wavenumber, no the refractive index of the 
carrier fluid, & the vacuum wavelength of the probing laser light and 3 the scattering 
angle [3]. 

The spectral width of Doppler lines in the non-diffusive case being considered is 
determined by the finite time of particle transit through the probing laser beam. For 
a Gaussian beam with characteristic width h, this instrumental broadening is 
di = (v,~/h)u(x,)cos(9/2). Adopting as the resolution criterion of the two adjacent 
peaks the condition dwn = 2Ai and using eqn. 6 for derivation of ax,,,/ap, we obtain 

(12) 

Eqn. 12 defines the relative or differential resolving power of the method. It depends on 
the IDA measuring geometry, the particle parameter ~1 and specific forms of the force 
and velocity profiles. As follows from eqn. 12, it is preferable to do the measurements 
at large scattering angles, with broad laser beams and small light wavelengths. It can 
also be seen that, owing to the z-dependence of eqn. 12, the best resolution for a given 
p is obtained at some optimum distance z. from the channel entrance, where eqn. 12 
reaches its minimum. The value of z. turns out to be strongly dependent on the particle 
parameter ,u. Considering the analysis of mixtures with a broad fraction distribution 
over p, this means the possibility of optimization of resolving conditions for some 
preselected intervals of p values by variation of the distance zo. 

Intrinsic hydrodynamic ,force in Poiseuille flow 
We now apply the general relationships obtained above to the focusing FFF 

version, based on the use of an intrinsic hydrodynamic force acting on the particles in 
Poiseuille flow. Substituting into eqns. 4 eqn. 1 for the profile of this force, and 
U(X) = 1 - x2 for the flow velocity profile, we obtain the following expressions for the 
particle trajectories and concentration distribution over the channel: 

Z*(i>’ = y[ln(%) + yln($$$)]; 

C(x, z*, a> = CO(xo) 
x0($ - 4). 
X(X? - x2) ’ 

z* _ 3vllPohz. 
8~ ’ (13) 

C(x, 0) = Co(xo>, - 1 < x, x0 < 1, z* 3 0 
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Here the new dimensionless coordinate z* is introduced to make more convenient the 
comparison of the trajectories of particles of different size a. The boundary trajectory 

x,(z*, a) (eqn. 6) which determines the concentration peak position corresponds to 
x0 = 1 in eqn. 13. As follows from substitution of eqn. 1 into eqn. 8, the transient 
transverse concentration profile is strongly asymmetric, rising continuously from the 
centre to the channel walls and having sharp cut-offs at 1x1 = x,(2*, a). 

Fig. 1 shows the variations of the position and height of concentration peaks 
with the distance along the channel, computed according to eqn. 13 for particles of 
various relative size (a/h). Actually, these curves illustrate the process of transverse 
equilibration of various particle fractions in a flow under the action of an intrinsic 
hydrodynamic force. One can see that at large distances Z* >> 103, i.e., in the 
equilibrium state, all the peaks merge together, but at intermediate distances they are 
well separated across the channel. This is due to the fact that the focusing force depends 
strongly on the particle size: F. z (u//T)~v~ (eqn. 1). The equilibration distance along 
the channel and other features of the limiting behavior of C(x, z*, a) are determined by 
eqns. 9 and 10 with p. = 2s:, c( = 1 and 

8~(1 -x:) a -3 

i” = 3V,,polz h 0 
(14) 

Fig. lb shows such a limiting exponential behaviour of C(x,). From eqn. 10 the 
fraction’s equilibration distance is given by 

- - 4Y(l - -XV(f)-3 ln( ‘:,,;i) 

‘f - 3v,,p,X:h h 
(1% 

For particle size a > 1 ,um the diffusive broadening can be neglected compared with the 
IDA instrumental broadening, which gives n = [i.,/n,h tan(9/2)] (1 - x:)/4xf (see eqn. 
12). Thus, eqn. 15 shows that for jWo = 0.63 pm, h % 10m2 cm, 9 % 0.2 rad and for 

a b 
1 .o 

0.9 

r 
N 

0.8 

“ti 
x 0.7 

0.6 

1 I / 1 
0 1 2 3 4 5 012345 

Fig I, (a) Calculated transverse position, .x,(z*), and (b) relative height, C(s,),!C,,, of the peak of transverse 
concentration of particles, placed in a plane Poiseuille flow in a narrow channel. Relative size (cr/l~): (I) 0.01; 

(2) 0.05; (3) 0. I. 
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(typical in our experiments) flow velocities ~11 z 1 cm/s, channel widths h z 1O-2 cm 
and particle relative sizes a/h z 10-2-10-‘, the transverse equilibration of particles 

due to the action of intrinsic hydrodynamic force completes at distances zfh > 104h z 
lo2 cm from the channel entrance. On the other hand, Fig. 1 shows that efficient 
separation of fractions takes place at distances z* z 500, i.e., zh z 5 cm. One can see 
also that for each pair of the discrete set of fractions there exists a specific distance 
zX which ensures the optimum spatial separation of these two fractions. 

Let us now consider further the polydisperse system of particles with a discrete 
set of fractions and make a natural assumption that these fractions have the normal 
size distribution near the appropriate mean values. It is sufficient to consider a binary 
mixture, because the generalization is obvious. In this instance the stationary 
concentration of particles CO(xO) maintained at the channel entrance has the form 

Co(a) = ~{~exp[-(U~~1)2]+~eXp[-(U~~2)2]~ (16) 

where ni is a relative concentration, ai is a mean fraction size and gi is a distribution 
width, i = 1,2. {Do not confuse eqn. 16 with a Gaussian-type stationary lateral 
concentration distribution, usually considered in FFFF [9,11], because CO(xO), set by 
eqn. 16, is homogeneous across the channel!} Then the transient concentration profile 
of the polydisperse (binary) mixture C,, at some distance z* (say, at the optimum 
separation distance zz) can be obtained by integrating over a the elementary profile 

C(x, z*, a), set by eqn. 13: 

C,,,(x, 4) = ~Co(u) C(x, z;>4 da 
0 

(17) 

Fig. 2 presents the total and fractional concentration profiles, computed for various 
relative concentrations of fractions, using eqns. 13, 16 and 17. It can be seen that the 
fractional profiles are strongly asymmetric relative to their peak positions, which is due 
to the absence of equilibrium across the channel. 

Fig. 3 shows the corresponding IDA spectra, which would be registered at point 
zg of a channel for the particle transverse concentration profiles presented in Fig. 2. 
These spectra are computed as follows. For the monodisperse system of scatterers with 
a negligibly small diffusive motion, the shape of the IDA spectrum is related to the 
concentration profile of scatterers in a flow by the following equation [l-3]: 

S(o, z*, a) - u3!?(qu) j C(x, z*, a>&~ - qv,,u(x)ldx (18) 
-1 

where the factor u3Y(qu) is responsible for the scattering angle and particle volume 
dependence of the scattered light intensity. To obtain the IDA spectrum for 
a polydisperse system with a size distribution described by C,(u) (eqn. 16) eqn. 18 
should be integrated over a with C,(u) as a weight function. In the case of Poiseuille 
flow, when u(x) = 1 - x2, this gives 
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A 

X0 

N 
x - 
a 

u” 

x/h 
Fig. 2. Transverse concentration profiles (sohd hne, total; dashed hnes, fractlonal) at the optimum distance 
of intrinsic hydrodynamic FFFF. computed for a binary mixture of particles with a, = 0.05/z, oL = O.ILI,, 
N2 = 0.1/l, 0* = 0.1~~ (see text). Relative fraction concentrations: (a) n,in2 = IO; (b) nJnz = 100. 

(19) 

As eqns. 18 and 19 show, the presence of a b-function in eqn. 18 leads to the 

substitution x = ,/T 1 w oO in the concentration profile C(x, z*, a) after the integra- 
tion over x. This gives the formal relationship between this profile and the shape of the 
IDA spectrum. Physically it reflects the fact that the contribution to the integral 
spectrum from each point of the scattering volume of a flow is the Doppler line whose 
frequency is determined by the local flow velocity, while the intensity is proportional to 
the local concentration of scatterers. Eqns. 18 and 19 are written in the simplest way, 
which does not account for the diffusive and instrumental broadening. For the 
computation of IDA spectra presented in Fig. 3, more sophisticated equations were 
used, which take into account the instrumental broadening due to the finite time of 
particle transit through the scattering volume (the part of a channel illuminated by 
a probing laser beam). 

As can be seen from Figs. 2 and 3, in the case of a homogeneous particle 
distribution the spectrum has a shape that is characteristic of the one-dimensional 
Poiseuille velocity profile and is determined by the (1 - w/o~)-~!* factor in eqn. 19. 
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Fig. 3. Integral Doppler spectra of the binary suspension flow in a flat channel, computed for the particle 
concentration profiles of Fig. 2 (solid and dashed lines) and for a homogeneous particle distribution 
(dot-dashed line). 

However in the case when the transverse particle concentration in a flow has maxima, 
the integral Doppler spectrum possesses the corresponding peaks. From comparison 
with Fig. 2 it is seen that IDA recording greatly enhances the peaks corresponding to 
the larger particles. This is due to the a3 factor in the light-scattering intensity (eqns. 18 
and 19). 

EXPERIMENTAL 

The measurements were carried out using a demountable flat channel 75 mm 
long and 8 mm high, formed by two polished glass plates separated by spacers. The 
channel width 2h was set by spacers and varied from 40 to 120 pm in different 
experiments. The channel was included in a closed circuit between the upper and the 
lower reservoirs, which were connected by a peristaltic pump. The measured samples 
were dilute suspensions (105-10’ particles/cm3) of latex particles 4 pm diameter, 
human erythrocytes and their mixtures in a standard phosphate-buffered saline (pH 
7.3-7.5). The flow velocity, controlled by the height of the upper reservoir. was 5 t 8 
cm/s at the channel axis. The IDA spectra of a laminar suspension flow were recorded 
using the differential optical set-up and the installation described elsewhere [3,4]. The 
spectra, registered in the two-beam optical set-up, contain the Doppler lines which can 
be detected in the two-beam (heterodyne) mode of operation only, and the intense line 
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centred at zero frequency, which is present in the single-beam mode also. This line 
originates from the time variations of the particle illumination during its transit 
through the focused laser beam. Therefore, to obtain the IDA spectrum proper, 
sequential recording of the two-beam and single-beam spectra were carried out each 
time, with subsequent subtraction of the second from the first in a proper scale. The 
spectra recorded were the amplitude Doppler spectra [S(j)]’ P (#‘= w/27-c = frequency 
in Hz) recorded in the accumulation mode with averaging of ca. IO4 subsequent 
samplings. The point of recording was 65 mm away from the channel entrance. 

Fig. 4 shows the IDA spectra thus obtained for two-component suspension flow 
for various relative concentrations of the components (latex particles and erythro- 
cytes). As can be seen from comparison with Figs. 2 and 3, in all instances transverse 
focusing of particles by the intrinsic hydrodynamic force is taking place, each fraction 
being represented by its own peak in the spectrum. The characteristic size of an 
erythrocyte particle is 7-8 pm, depending on its physiological condition, whereas the 
latex particle size is 4 ,um. Hence the action of the transverse force (eqn. 1) is about one 
order of magnitude stronger with erythrocytes, resulting in considerably faster 
focusing of their fraction. The situation is closely simulated by curves 2 and 3 in Fig. 1. 
As a result, the erythrocyte peak appearing in the IDA spectrum as erythrocytes are 
added to the latex suspension is situated at a higher frequency than the latex peak. 
With increase in erythrocyte concentration the peak rapidly grows and begins to 

Fig. 4. IDA spectra of a dilute suspension flow of latex particles (20 = 4 pm) and human erythrocytes 
(2a h 7 pm) in a flat channel (2h = 47 pm), measured for various relative concentrations of latex (nt) and 
erythrocytes (nz): nz/nl (1) = 0; (2) 0.05; (3) 0.1; (4) 0.15; (5) 0.2. 

Fig. 5. Transverse profiles of the sum of the local fraction volumes, Cl(x)af + c,(_x)a~ (relative units), 
evaluated for mixtures of latex particles and erythrocytes in a flow, using the IDA spectra in Fig. 4. 
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dominate in the spectrum. This is a consequence of the cubic law of the scattered light 
intensity ver.su~ particle size dependence (see eqns. 18 and 19). 

Using the relationships of the type of eqns. 18 and 19 between the IDA spectrum 
shape and the light scattering particles concentration profile, it is possible to evaluate 
such profiles for the latex particles and erythrocytes in measured suspension flows on 
the basis of the spectra in Fig. 4. The corresponding results are presented in Fig. 5. 
They are in good agreement with the theoretical calculations (Fig. 2), except for the 
peak positions, which is due to the value xf = 0.62, used in calculations. As was 
pointed out (see eqn. l), under our experimental conditions the focusing point lies 
closer to the channel centre than was measured [18] and calculated [19]. This 
phenomenon is now under investigation. 

Hence the results of the present measurements show that under the experimental 
conditions the lateral spatial separation of a binary mixture (latex particles-erythro- 
cytes) into two nearly monodisperse fractions occurs as a result of the action of the 
intrinsic focusing hydrodynamic force in a channel flow. 

DISCUSSION AND CONCLUSIONS 

The theoretical analysis and experimental data presented here have two main 
aspects. First, they introduce a new focusing force into FFFF practice [S-17], namely, 
the intrinsic hydrodynamic (or SegreeSilberberg) force [l&19], which allows analytical 
fractionation of particles relative to their size to be accomplished without the 
application of any external field to a channel. Second, they demonstrate the practical 
possibility of analytical fractionation of particles not only after their equilibration 
across the channel, but also in the process of this equilibration. Such a possibility is 
now opened up owing to the application of the IDA recording technique [l-4] just 
inside the channel. The application of IDA also allows the analysis time to be 
decreased to ca. 1 min. 

The new experimental conditions require an adequate description of the process 
of particle equilibration across the channel, which usually assumed to be completed 
before the separation starts along the channel [5-171. The process of transverse 
equilibration was considered in this paper, using the kinematic or non-diffusive 
approximation. Such an approach is well justified when dealing with sufficiently large 
(micrometre-sized) particles, and has the serious advantage of giving easy-to-interpret 
analytical results for the general form of lateral force and flow velocity profiles in 
a channel. The next step, which is under development, is to consider the appropriate 
convective diffusion equation, but this requires numerical procedures. The present 
results in their limiting case, i.e., for large distances along the channel, are consistent 
with the initial steady-state concentrational distributions, considered by Giddings [9] 
and JanCa and Chmelik [l 11, if the lattsr are characterized by negligibly small diffusion. 

The present separation experiments using the intrinsic hydrodynamic force were 
carried out under essentially non-equilibrium lateral conditions, but they can be done 
in the usual FFFF mode of operation, when the fractions are detected at the outlet of 
a channel after their lateral equilibration and longitudinal separation. The theoretical 
estimates and preliminary experiments showed, however, that in the equilibrium mode 
of operation the longitudinal separation of particles is very difficult to observe, 
primarily because the equilibrium focusing positions are identical for all the particles 
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regardless their size [l&19]. In contrast, as the present theoretical and experimental 
data show (see eqns. 1 and 13 and Figs. I&S), in the non-equilibrium mode it is possible 
to obtain the effective transverse separation of micrometre-sized particles using 
channel widths of several tens of micrometres and channel lengths of several 
centimetres. By increasing the length and decreasing the width of a channel, it seems to 
be possible to accomplish the non-equilibrium intrinsic hydrodynamic FFFF of 
submicrometre-sized particles also. 

The use of the intrinsic hydrodynamic force together with IDA recording in 
FFFF gives another promising possibility, namely the detection of low concentrations 
of large-sized particles in a mixture. The possibility of such indicative FFFF is based 
on the fact that the magnitude of the focusing hydrodynamic force (eqn. I) is 
proportional to the fourth power of particle size, and the scattered light intensity, 
registered from the particle in IDA, is proportional to the cube of its size. These two 
factors result in the situation that the peak in the IDA spectrum corresponding to 
admixture of larger particles in a flow can be observed distinctly, almost independently 
of the specific form of the size distribution function of smaller particles. 

Owing to the focusing character of the intrinsic hydrodynamic force, the most 
advantageous applications of intrinsic hydrodynamic FFFF are to mixtures with 
discrete sets of fractions. In this instance, as eqns. 16-19 show. the recording of IDA 
spectra allows not only the identification of different fractions, but also the 
comparatively easy determination of their concentration profiles in a flow and their 
relative concentrations from the shape of the IDA spectra. However, in the case of 
continuous particle size distribution functions, the solution of such inverse problem 
becomes complicated and requires the application of the theory of inverse incorrect 
mathematical problems. A similar situation arises in dynamic light scattering when 
applied to the analysis of polydisperse particle systems [21]. 

SYMBOLS 

;: 
radius of a particle 
Gaussian width of a laser beam 

C(X, Z), C(X, I*, a) concentration of particle fraction in a flow 

Wo) stationary concentration at the channel entrance 

C&M&~, 2) concentration of polydisperse particle mixture 

“” 

lateral force and its magnitude 
frequency in Hz 
half-width of a flat channel 

PI0 refraction index of fluid 

tr1, fl2 relative concentrations of fractions in a binary mixture 

4 laser light-scattering wavenumber 
S(w,z*,u), &(w,z*) IDA power spectra at a distance Z* 

4X) velocity profile of a channel flow 
i; particle velocity relative to the channel walls 

? maximum flow velocity 
x lateral coordinate of a particle (in units of h) 

Xf focusing point position 
Z particle coordinate along the flow (in units of h) 
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reduced-to-flow-parameters z coordinate 
effective distance, corresponding to lateral equilibration 
distance corresponding to optimum lateral separation 
power index of lateral force’s serial expansion near xf 
concentration peak effective width (in units of h) 
fluid viscosity 
laser light-scattering angle 
wavelength of laser light 
separation parameter of a particle 
fluid density 
effective width of particle size distribution function 
peak position universal function 
light-scattering indicatrix 
cyclic frequency; o. = qvi1 = 271fo 
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